

1 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

[MS-CFB]:
Compound File Binary File Format

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain

Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Revision Summary

Date

Revision

History

Revision

Class Comments

07/16/2010 1.0 New First Release.

08/27/2010 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 2.0 Major Significantly changed the technical content.

11/19/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 2.1 Minor Clarified the meaning of the technical content.

09/23/2011 2.1 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Contents

1 Introduction ... 4
1.1 Glossary ... 5
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Protocols and Other Structures .. 9
1.5 Applicability Statement ... 10
1.6 Versioning and Localization ... 10
1.7 Vendor-Extensible Fields ... 10

2 Structures .. 11
2.1 Compound File Sector Numbers and Types .. 13
2.2 Compound File Header ... 15
2.3 Compound File FAT Sectors ... 18
2.4 Compound File Mini FAT Sectors .. 19
2.5 Compound File DIFAT Sectors ... 20
2.6 Compound File Directory Sectors ... 22

2.6.1 Compound File Directory Entry ... 22
2.6.2 Root Directory Entry ... 26
2.6.3 Other Directory Entries ... 27
2.6.4 Red-Black Tree .. 27

2.7 Compound File User-Defined Data Sectors .. 28
2.8 Compound File Range Lock Sector ... 28
2.9 Compound File Size Limits .. 29

3 Structure Examples .. 30
3.1 The Header ... 30
3.2 Sector #0: FAT Sector .. 31
3.3 Sector #1: Directory Sector .. 32

3.3.1 Stream ID 0: Root Directory Entry.. 33
3.3.2 Stream ID 1: Storage 1 .. 33
3.3.3 Stream ID 2: Stream 1 ... 34
3.3.4 Stream ID 3: Unused, Free .. 35

3.4 Sector #2: MiniFAT Sector .. 35
3.5 Sector #3: Mini Stream Sector .. 37

4 Security Considerations .. 39
4.1 Validation and Corruption ... 39
4.2 File Security .. 39
4.3 Unallocated Ranges .. 39

5 Appendix A: Product Behavior .. 40

6 Change Tracking... 44

7 Index ... 45

4 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

1 Introduction

This document specifies a new structure called the Microsoft Compound File Binary (CFB) file format,
also known as the Object Linking and Embedding (OLE) or Component Object Model (COM)
structured storage compound file implementation binary file format. This structure name can be
shortened to compound file.

Traditional file systems encounter challenges when they attempt to store efficiently multiple kinds
of objects in one document. A compound file provides a solution by implementing a simplified file
system within a file. Structured storage defines how to treat a single file as a hierarchical collection

of two types of objects -- storage objects and stream objects -- that behave as directories and
files, respectively. This scheme is called structured storage. The purpose of structured storage is to
reduce the performance penalties and overhead associated with storing separate objects in a flat
file. The standard Microsoft Windows® COM implementation of OLE structured storage is called
compound files.

Structured storage solves performance problems by eliminating the need to totally rewrite a file
whenever a new object is added, or an existing object increases in size. The new data is written to

the next available free location in the file, and the storage object updates an internal structure that
maintains the locations of its storage objects and stream objects. At the same time, structured
storage enables end users to interact and manage a compound file as if it were a single file rather
than a nested hierarchy of separate objects. For example, a compound file can be copied, backed
up, and e-mailed like a normal single file.

The following figure shows a simplified file system with multiple directories and files nested in a

hierarchy. Similarly, a compound file is a single file that contains a nested hierarchy of storage and
stream objects, with storage objects analogous to directories, and stream objects analogous to files.

Figure 1: Simplified file system hierarchy with multiple nested directories and files

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90136
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90136
http://go.microsoft.com/fwlink/?LinkId=90136
http://go.microsoft.com/fwlink/?LinkId=90136
http://go.microsoft.com/fwlink/?LinkId=90136
http://go.microsoft.com/fwlink/?LinkId=90136
http://go.microsoft.com/fwlink/?LinkId=90136

5 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Figure 2: Structured storage compound file hierarchy that contains nested storage objects
and stream objects

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access control list (ACL)
application
child object

Coordinated Universal Time (UTC)
directory

disk block
FAT file system
file
file allocation table (FAT)
file attribute

FileInformation
file stream
file system
FILETIME
globally unique identifier (GUID)
little-endian

main stream
NULL GUID
object
object class
parent object

sector
transaction

Unicode
universally unique identifier (UUID)
UTF-16

%5bMS-GLOS%5d.pdf

6 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

The following terms are specific to this document:

CLSID: A GUID representing an object class. In a root storage object or storage object,

the object class GUID can be used as a parameter to launch applications.

compound file: A structure for storing a file system, similar to a simplified FAT file system

inside a single file, by dividing the single file into sectors.

creation time: The time, in UTC, when a storage object was created.

directory entry: A structure that contains a storage object's or stream object's
FileInformation.

double-indirect file allocation table (DIFAT): A structure used to locate FAT sectors in a
compound file.

directory stream: An array of directory entries grouped into sectors.

header: The structure at the beginning of a compound file.

mini FAT: A file allocation table (FAT) structure for the mini stream used to allocate space
in a small sector size.

mini stream: A structure that contains all user-defined data for stream objects less than a
predefined size limit.

modification time: The time, in UTC, when a storage object was last modified.

root storage object: A storage object in a compound file that must be accessed before any
other storage objects and stream objects are referenced. It is the uppermost parent
object in the storage object and stream object hierarchy.

sector chain: A linked list of sectors, where each sector can be located in a different location
inside a compound file.

sector number: A non-negative integer identifying a particular sector located in a compound
file.

sector size: The size in bytes of a sector in a compound file, typically 512 bytes.

storage object: An object in a compound file analogous to a file system directory. The
parent object of a storage object must be another storage object or the root storage
object.

stream object: An object in a compound file analogous to a file system file. The parent
object of a stream object must be a storage object or the root storage object.

unallocated free sector: An empty sector that can be allocated to hold data.

user-defined data: The main stream portion of a stream object.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

7 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links
are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an

additional source.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[UNICODE3.0.1] The Unicode Consortium, "Unicode Default Case Conversion Algorithm 3.0.1",
August 2001, http://www.unicode.org/Public/3.1-Update1/CaseFolding-4.txt

[UNICODE5.0.0] The Unicode Consortium, "Unicode Default Case Conversion Algorithm 5.0.0",
March 2006, http://www.unicode.org/Public/5.0.0/ucd/CaseFolding.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-OLEDS] Microsoft Corporation, "Object Linking and Embedding (OLE) Data Structures".

[MS-OLEPS] Microsoft Corporation, "Object Linking and Embedding (OLE) Property Set Data

Structures".

1.3 Overview

A compound file is a structure used to store a hierarchy of storage objects and stream objects into a
single file or memory buffer.

A storage object is analogous to a file system directory. Just as a directory can contain other
directories and files, a storage object can contain other storage objects and stream objects. Also like

a directory, a storage object tracks the locations and sizes of the child storage object and stream
objects nested beneath it.

A stream object is analogous to the traditional notion of a file. Like a file, a stream contains user-
defined data stored as a consecutive sequence of bytes.

The hierarchy is defined by a parent object/child object relationship. Stream objects cannot
contain child objects. Storage objects can contain stream objects and/or other storage objects, each
of which has a name that uniquely identifies it among the children of its parent storage object.

The root storage object has no parent object. The root storage object also has no name; because
names are used to identify child objects, a name for the root storage object is unnecessary and the
file format does not provide a representation for it.

mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=119562
http://go.microsoft.com/fwlink/?LinkId=119564
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=196147
%5bMS-OLEPS%5d.pdf
%5bMS-OLEPS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

8 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Figure 3: Example of a structured storage compound file

A compound file consists of the root storage object with optional child storage objects and stream

objects in a nested hierarchy. Stream objects can contain user-defined data stored as an array of
bytes. Storage objects can contain an object class GUID called a CLSID, which can identify an
application that can read/write stream objects under that storage object.

The benefits of compound files include the following:

Because the compound file implementation provides a file system-like abstraction within a file,

independent of the details of the underlying file system, compound files can be accessed by

different applications on different platform operating systems. The compound file can be a
generic container file format that holds data for multiple applications.

Because the separate objects in a compound file are saved in a standard format, any browser

utility reading the standard format can list the storage objects and stream objects in the
compound file, even though data within a given object can be in a proprietary format.

There exist standardized data structures for writing certain types of stream objects—for example,

summary information property-sets (for more information see [MS-OLEPS])—that applications
can read using parsers for these data structures, even when the rest of the stream objects
cannot be understood.

The compound file implementation constructs a level of indirection by supporting a file system within
a file. A single flat file requires a large contiguous sequence of bytes on the disk. By contrast,

compound files define how to treat a single file as a structured collection of storage objects and
stream objects that act as file system directories and files, respectively.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-OLEPS%5d.pdf

9 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Figure 4: Example of a compound file showing equal-length sector divisions

A compound file is divided into equal-length sectors. The first sector contains the compound file
header. Subsequent sectors are identified by a 32-bit non-negative integer number, called the

sector number.

A group of sectors can form a sector chain, which is a linked list of sectors forming a logical byte
array, even though the sectors can be in non-consecutive locations in the compound file. For
example, shown are two sector chains. A sector chain starts at sector #0, continues to sector #2,
and ends at sector #4. Another sector chain starts at sector #1, and ends at sector #3.

Figure 5: Example of a compound file sector chain

A sector can be unallocated or free, in which case it is not part of a sector chain. A sector number
is used for several purposes.

1. A sector number is used to identify the file offset of that sector in a compound file.

2. In a sector chain, it is used to identify the next sector in the chain.

3. Special sector numbers are used to represent chain termination and free sectors.

1.4 Relationship to Protocols and Other Structures

[MS-DTYP], "Windows Data Types", Revision 3.0, September 2007, MS-DTYP-v1.02.doc

The compound file internal structures use the following Microsoft Windows® data types.

FILETIME for storage timestamps.

GUID for storage objects object class ID.

ULONGLONG for stream sizes.

DWORD for sector numbers and various size fields.

USHORT for header and directory fields.

BYTE for header and directory fields.

WCHAR for storage and stream names.

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

10 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

[MS-OLEPS] Microsoft OLE Property Set Data Structures Specification

OLE property sets are a standard set of stream formats that are typically implemented as compound

file stream objects. Most applications that save their data in compound files also write out summary
information property set data in the OLE property sets stream formats.

[MS-OLEDS] Microsoft OLE Data Structures: Structure Specification

OLE linking and embedding streams and storages are used to contain data used by outside
applications that implement the OLE interfaces and APIs.

[UNICODE3.0.1] The Unicode Consortium, "Unicode Default Case Conversion Algorithm", Version
3.0.1, August 2001, http://www.unicode.org/Public/3.1-Update1/CaseFolding-4.txt

[UNICODE5.0.0] The Unicode Consortium, "Unicode Default Case Conversion Algorithm", Version
5.0.0, March 2006, http://www.unicode.org/Public/5.0.0/ucd/CaseFolding.txt

The Unicode Default Case Conversion Algorithm, simple case conversion variant is used to compare
storage object and stream object names.

1.5 Applicability Statement

This protocol structure is recommended for persisting objects in a random access file system or
random access memory system.

This protocol is not recommended for real-time streaming, progressive rendering, or open-ended
data protocols where the size of streams is unknown when the compound file is transmitted. The
known size of all structures within a compound file must be specified when the compound file is
transmitted or retrieved.

1.6 Versioning and Localization

This document covers versioning issues in the following areas:

Structure Versions: There are two versions of the compound file structure, version 3 and

version 4. These versions are defined in section 2.2. In a version 4 compound file, all features of
version 3 MUST be implemented.

Implementations MUST return an error when encountering a higher version than supported. For
example, if only version 3 compound file is supported, the implementation MUST return an error
if a version 4 compound file is being opened.

Localization: There is no localization-dependent structure content in the compound file

structure. In the implementation, all Unicode character comparisons MUST be locale-invariant
and all timestamps MUST be stored in UTC time-zone.

1.7 Vendor-Extensible Fields

A compound file does not contain any vendor-extensible fields. However, a compound file does
contain ways to store user-defined data in storage objects and stream objects. The vendor can store

vendor-specific data in user-defined data.

%5bMS-OLEPS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=196147
http://go.microsoft.com/fwlink/?LinkId=119562
http://go.microsoft.com/fwlink/?LinkId=119564
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

2 Structures

This document references commonly used data types as defined in [MS-DTYP].

Unless otherwise qualified, instances of GUID in this section refer to [MS-DTYP] section 2.3.2.

Figure 6: Sectors of a compound file with FAT array at sector #0

The main structure used to manage sector allocation and sector chains is the file allocation table
(FAT). The FAT contains an array of 32-bit sector numbers, where the index represents a sector

number, and its value represents the next sector in the chain, or a special value.

FAT[0] contains sector #0's next sector in chain

FAT[1] contains sector #1's next sector in chain

...

FAT[N] contains sector #N's next sector in chain

This allows a compound file to contain many sector chains in a single file. Many compound file

structures, including user-defined data, are implemented as sector chains represented in the FAT.

Even the FAT array itself is represented as a sector chain. The sector chain holds both internal and
user-defined data streams. Because the FAT array is stored in a sector chain, the DIFAT array is
used to find the FAT sector locations. Each DIFAT array entry contains a 32-bit sector number.

DIFAT[0] contains FAT sector #0's location

DIFAT[1] contains FAT sector #1's location

...

DIFAT[N] contains FAT sector #N's location

Because space for streams is always allocated in sector-sized blocks, there can be considerable
waste when storing objects much smaller than the normal sector size (either 512 or 4096 bytes). As
a solution to this problem, the concept of the mini FAT is introduced.

Figure 7: Mini sectors of a mini stream

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

12 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

The mini FAT is structurally equivalent to the FAT, but is used in a different way. The sector size for
objects represented in mini FAT is 64 bytes, instead of the 512-bytes or 4096-bytes for normal

sectors. The space for these objects comes from a special stream called the mini stream. The mini
stream is an internal stream object divided into equal-length mini sectors. Each mini FAT array entry

contains a 32-bit sector number for the mini stream, not the file.

MiniFAT[0] contains mini stream sector #0's next sector in chain

MiniFAT[1] contains mini stream sector #1's next sector in chain

...

MiniFAT[N] contains mini stream sector #N's next sector in chain

Stream objects with a user-defined data length less than a cutoff (4096 bytes) are allocated with
the mini FAT from the mini stream. Larger stream objects are allocated with the FAT from
unallocated free sectors in the file.

The names of all storage objects and stream objects, along with other object metadata like stream

size and storage CLSIDs, are found in the directory entry array. The space for the directory entry
array is allocated with the FAT like other sector chains.

DirectoryEntry[0] contains information about the root storage object.

DirectoryEntry[1] contains information about a storage object, stream object, or unallocated

object.

...

DirectoryEntry[N] contains information about a storage object, stream object, or unallocated

object.

Figure 8: Entries of a directory entry array

13 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Figure 9: Summary of compound file internal streams and connections to user-defined
data streams

This diagram summarizes the compound file main internal streams and how they are linked to user-
defined data streams. The DIFAT, FAT, mini FAT, directory entry arrays, and mini stream are
internal streams, while the user-defined data streams link directly to their stream objects.

In a compound file, all integer fields, including Unicode characters encoded in UTF-16, MUST be
stored in little-endian byte order. The only exception is in user-defined data streams, where the
compound file structure does not impose any restrictions.

2.1 Compound File Sector Numbers and Types

Each sector, except for the header, is identified by a non-negative 32-bit sector number. The

following sector numbers above 0xFFFFFFFA are reserved, and MUST NOT be used to identify the
location of a sector in a compound file.

Sector name Integer value Description

REGSECT 0x00000000 - 0xFFFFFFF9 Regular sector number

MAXREGSECT 0xFFFFFFFA Maximum regular sector number

DIFSECT 0xFFFFFFFC Specifies a DIFAT sector in the FAT

FATSECT 0xFFFFFFFD Specifies a FAT sector in the FAT

ENDOFCHAIN 0xFFFFFFFE End of linked chain of sectors

FREESECT 0xFFFFFFFF Specifies unallocated sector in the FAT, Mini FAT, or DIFAT

The following list contains the types of sectors allowed in a compound file. Their structures are
described in sections 2.2 through 2.8.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

14 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Sector type

Array entry

length Purpose

Header N/A A single sector with fields needed to read the other structures of the

compound file. This sector must be at file offset 0.

FAT 4 BYTES Main allocator of space within the compound file.

DIFAT 4 BYTES Used to locate FAT sectors in the compound file.

Mini FAT 4 BYTES Allocator for mini stream user-defined data.

Directory 128 BYTES Contains storage object and stream object metadata.

User-defined

Data

N/A User-defined data for stream objects.

Range Lock N/A A single sector used to manage concurrent access to the compound

file. This sector must cover file offset 0x7FFFFFFF.

Unallocated

Free

N/A Empty space in the compound file.

Compound file sectors can contain unallocated free space, user-defined data for stream objects,
directory sectors containing directory entries, FAT sectors containing the FAT entries, DIFAT sectors
containing the DIFAT entries, and mini FAT sectors containing the mini FAT entries. Compound file
sectors can be located at any sector-sized offset in the file, with the exception of the header and
range lock sector.

Figure 10: Example of the hierarchy of compound file sectors

15 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

All the sector types are eventually linked back to the header sector, except for the range lock sector
and unallocated free sectors. Unallocated free sectors are marked in the FAT as FREESECT

(0xFFFFFFFF). Unallocated free sectors can be in the middle of the file, and can be created by
extending the file size and allocating additional FAT sectors to cover the increased length. The range

lock sector is identified by a fixed file offset (0x7FFFFFFF) in the compound file.

In a compound file, all sector chains MUST contain valid sector numbers, less than or equal to
MAXREGSECT (0xFFFFFFFA). In a sector chain, the last sector's next pointer MUST be ENDOFCHAIN
(0xFFFFFFFE). All sectors in a sector chain MUST NOT be part of any other sector chain in the same
file. A sector chain MUST NOT link to a sector appearing earlier in the same chain, which would
result in a cycle. Finally, the actual sector count MUST match the size specified for a sector chain.

2.2 Compound File Header

The Compound File Header structure MUST be at the beginning of the file (offset 0).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Header Signature

...

Header CLSID

...

...

...

Minor Version Major Version

Byte Order Sector Shift

Mini Sector Shift Reserved

...

Number of Directory Sectors

Number of FAT Sectors

First Directory Sector Location

Transaction Signature Number

Mini Stream Cutoff Size

16 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

First Mini FAT Sector Location

Number of Mini FAT Sectors

First DIFAT Sector Location

Number of DIFAT Sectors

DIFAT

...

...

...

...

...

...

...

(DIFAT cont'd for 101 rows)

Header Signature (8 bytes): Identification signature for the compound file structure, and
MUST be set to the value 0xD0, 0xCF, 0x11, 0xE0, 0xA1, 0xB1, 0x1A, 0xE1.

Header CLSID (16 bytes): Reserved and unused class ID that MUST be set to all zeroes
(CLSID_NULL).

Minor Version (2 bytes): Version number for non-breaking changes. This field SHOULD be set
to 0x003E if the major version field is either 0x0003 or 0x0004.

Value Meaning

0x003E If major version field is either 0x0003 or 0x0004.

Major Version (2 bytes): Version number for breaking changes. This field MUST be set to
either 0x0003 (version 3) or 0x0004 (version 4).

Name Value

version 3 0x0003

version 4 0x0004

17 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Byte Order (2 bytes): This field MUST be set to 0xFFFE. This field is a byte order mark for all
integer fields, specifying little-endian byte order.

Sector Shift (2 bytes): This field MUST be set to 0x0009, or 0x000c, depending on the Major
Version field. This field specifies the sector size of the compound file as a power of 2.

If Major Version is 3, then the Sector Shift MUST be 0x0009, specifying a sector size of 512

bytes.

If Major Version is 4, then the Sector Shift MUST be 0x000C, specifying a sector size of

4096 bytes.

Value Meaning

Major Version

3

0x0009

If Major Version is 3, then the Sector Shift MUST be 0x0009, specifying a sector

size of 512 bytes.

Major Version

4

0x000C

If Major Version is 4, then the Sector Shift MUST be 0x000C, specifying a sector

size of 4096 bytes.

Mini Sector Shift (2 bytes): This field MUST be set to 0x0006. This field specifies the sector
size of the Mini Stream as a power of 2. The sector size of the Mini Stream MUST be 64 bytes.

Reserved (6 bytes): This field MUST be set to all zeroes.

Number of Directory Sectors (4 bytes): This integer field contains the count of the number
of directory sectors in the compound file.

If Major Version is 3, then the Number of Directory Sectors MUST be zero. This field is not

supported for version 3 compound files.

Value Meaning

0x00000000 If Major Version is 3, then the Number of Directory Sectors MUST be zero.

Number of FAT Sectors (4 bytes): This integer field contains the count of the number of FAT
sectors in the compound file.

First Directory Sector Location (4 bytes): This integer field contains the starting sector
number for the directory stream.

Transaction Signature Number (4 bytes): This integer field MAY contain a sequence number
that is incremented every time the compound file is saved by an implementation that supports

file transactions. This is field that MUST be set to all zeroes if file transactions are not
implemented.<1>

Mini Stream Cutoff Size (4 bytes): This integer field MUST be set to 0x00001000. This field
specifies the maximum size of a user-defined data stream allocated from the mini FAT and

mini stream, and that cutoff is 4096 bytes. Any user-defined data stream larger than or equal
to this cutoff size must be allocated as normal sectors from the FAT.

First Mini FAT Sector Location (4 bytes): This integer field contains the starting sector

number for the mini FAT.

18 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Number of Mini FAT Sectors (4 bytes): This integer field contains the count of the number of
mini FAT sectors in the compound file.

First DIFAT Sector Location (4 bytes): This integer field contains the starting sector number
for the DIFAT.

Number of DIFAT Sectors (4 bytes): This integer field contains the count of the number of
DIFAT sectors in the compound file.

DIFAT (436 bytes): This array of 32-bit integer fields contains the first 109 FAT sector
locations of the compound file.

For version 4 compound files, the header size (512 bytes) is less than the sector size (4096

bytes), so the remaining part of the header (3584 bytes) MUST be filled with all zeroes.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DIFAT[0]

DIFAT[1]

... DIFAT[N] (variable)

DIFAT[107]

DIFAT[108]

2.3 Compound File FAT Sectors

The FAT is the main allocator for space within a compound file. Every sector in the file is represented

within the FAT in some fashion, including those sectors that are unallocated (free). The FAT is a

sector chain made up of one or more FAT sectors.

Figure 11: Sectors of a FAT array

The FAT is an array of sector numbers that represent the allocation of space within the file, grouped
into FAT sectors. Each stream is represented in the FAT by a sector chain, in much the same fashion
as a FAT file system.

The set of FAT sectors can be considered together as a single array. Each entry in that array
contains the sector number of the next sector in the chain, and this sector number can be used as

an index into the FAT array to continue along the chain.

Special values are reserved for chain terminators (ENDOFCHAIN = 0xFFFFFFFE), free sectors
(FREESECT = 0xFFFFFFFF), and sectors that contain storage for FAT sectors (FATSECT =

%5bMS-GLOS%5d.pdf

19 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

0xFFFFFFFD) or DIFAT Sectors (DIFSECT = 0xFFFFFFC), which are not chained in the same way as
the others.

The locations of FAT sectors are read from the DIFAT, which is described below. The FAT is
represented in itself, but not by a chain. A special reserved sector number (FATSECT = 0xFFFFFFFD)

is used to mark sectors allocated to the FAT.

A sector number can be converted into a byte offset into the file by using the following formula:
(sector number + 1) x Sector Size. This implies that sector #0 of the file begins at byte offset
Sector Size, not at 0.

The detailed FAT sector structure is specified below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Next Sector in Chain (variable)

...

Next Sector in Chain (variable): This field specifies the next sector number in a chain of
sectors.

If Header Major Version is 3, then there MUST be 128 fields specified to fill a 512-byte

sector.

If Header Major Version is 4, then there MUST be 1024 fields specified to fill a 4096-byte

sector.

The last FAT sector can have more entries that span past the actual size of the compound file.

In this case, the entries that cover past end-of-file MUST be marked with FREESECT
(0xFFFFFFFF). The size of a compound file is determined by the index of the last non-free FAT
array entry. If the last FAT sector contains an entry FAT[N] != FREESECT (0xFFFFFFFF), then

the file size MUST be at least (N + 1) x (Sector Size) bytes in length.

Value Meaning

DIFSECT

0xFFFFFFC

DIFAT Sectors (DIFSECT = 0xFFFFFFC), which are not chained in the same way as

the others.

FATSECT

0xFFFFFFFD

Sectors that contain storage for FAT sectors (FATSECT = 0xFFFFFFFD).

ENDOFCHAIN

0xFFFFFFFE

Chain terminators (ENDOFCHAIN = 0xFFFFFFFE).

FREESECT

0xFFFFFFFF

Free sectors (FREESECT = 0xFFFFFFFF).

2.4 Compound File Mini FAT Sectors

The mini FAT is used to allocate space in the mini stream. The mini stream is divided into smaller,
equal-length sectors, and the sector size used for the mini stream is specified from the Compound

File Header (64 bytes).

20 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Figure 12: Sectors of a mini FAT array

The locations for mini FAT sectors are stored in a standard chain in the FAT, with the beginning of
the chain stored in the header (first mini FAT starting sector location).

A mini FAT sector number can be converted into a byte offset into the mini stream by using the

following formula: sector number x 64 bytes. This formula is different from the formula used to
convert a sector number into a byte offset in the file, because no header is stored in the mini
stream.

The mini stream is chained within the FAT in exactly the same fashion as any normal stream. The
mini stream's starting sector is referenced in the first directory entry (root storage stream ID 0).

If all of the user streams in the file are greater than the cutoff of 4096 bytes, then mini FAT and
mini stream are not required. In this case, the header's first mini FAT starting sector location can be

set to ENDOFCHAIN, and the root directory entry's starting sector location can be set to
ENDOFCHAIN.

The detailed mini FAT sector structure is specified below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Next Sector in Chain (variable)

...

Next Sector in Chain (variable): This field specifies the next sector number in a chain of
sectors.

If header Major Version is 3, then there MUST be 128 fields specified to fill a 512-byte

sector.

If Header Major Version is 4, then there MUST be 1024 fields specified to fill a 4096-byte

sector.

Value Meaning

ENDOFCHAIN

0xFFFFFFFE

Chain terminators (ENDOFCHAIN = 0xFFFFFFFE).

2.5 Compound File DIFAT Sectors

The DIFAT array is used to represent storage of the FAT sectors. The DIFAT is represented by an
array of 32-bit sector numbers. The DIFAT array is stored both in the header and in DIFAT sectors.

21 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

In the header, the DIFAT array occupies 109 entries, and in each DIFAT sector, the DIFAT array
occupies the entire sector minus 4 bytes (the last field is for chaining the DIFAT sector chain).

Figure 13: Sectors of a DIFAT array

The DIFAT sectors are linked together by the last field in each DIFAT sector. As an optimization, the

first 109 FAT sectors are represented within the header itself. No DIFAT sectors will be needed in a
compound file that is smaller than 6.875 megabyte (MB) for a 512 byte sector compound file (6.875
MB = (1 header sector + 109 FAT sectors x 128 non-empty entries) × 512 bytes per sector).

The DIFAT represents the FAT sectors in a different manner than the FAT represents a sector chain.
A given index, n, into the DIFAT array will contain the sector number of the (n+1)th FAT sector. For
instance, index #3 in the DIFAT contains the sector number for the 4rd FAT sector, since DIFAT
array starts with index #0.

The storage for DIFAT sectors is reserved with the FAT, but it is not chained there. Space for DIFAT
sectors is marked by a special sector number, DIFSECT (0xFFFFFFFC).

The location of the first DIFAT sector is stored in the header.

A special value of ENDOFCHAIN (0xFFFFFFFE) is stored in "Next DIFAT Sector Location" field of the
last DIFAT sector, or in the header when no DIFAT sectors are needed.

The detailed DIFAT sector structure is specified below.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

FAT Sector Location (variable)

...

Next DIFAT Sector Location

FAT Sector Location (variable): This field specifies the FAT sector number in a DIFAT.

If Header Major Version is 3, then there MUST be 127 fields specified to fill a 512-byte

sector minus the "Next DIFAT Sector Location" field.

If Header Major Version is 4, then there MUST be 1023 fields specified to fill a 4096-byte

sector minus the "Next DIFAT Sector Location" field.

Next DIFAT Sector Location (4 bytes): This field specifies the next sector number in the
DIFAT chain of sectors. The first DIFAT sector is specified in the Header. The last DIFAT sector
MUST set this field to ENDOFCHAIN (0xFFFFFFFE).

22 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Name Value

ENDOFCHAIN 0xFFFFFFFE

2.6 Compound File Directory Sectors

The directory entry array is a structure used to contain information about the stream and storage
objects in a compound file, and to maintain a tree-style containment structure. The directory entry

array is allocated as a standard chain of directory sectors within the FAT. Each directory entry is
identified by a non-negative number called the stream ID. The first sector of the directory sector
chain MUST contain the root storage directory entry as the first directory entry at stream ID 0.

Figure 14: Sectors of a directory entry array

2.6.1 Compound File Directory Entry

The directory entry array is an array of directory entries grouped into a directory sector. Each
storage object or stream object within a compound file is represented by a single directory entry.
The space for the directory sectors holding the array is allocated from the FAT.

The valid values for a stream ID—used in Child ID, Right Sibling ID, and Left Sibling ID—are 0
through MAXREGSID (0xFFFFFFFA). The special value NOSTREAM (0xFFFFFFFF) is used as a

terminator.

Stream ID name Integer value Description

REGSID 0x00000000 through 0xFFFFFFF9 Regular stream ID to identify directory entry

MAXREGSID 0xFFFFFFFA Maximum regular stream ID

NOSTREAM 0xFFFFFFFF Terminator or empty pointer

The directory entry size is fixed at 128 bytes. The name in the directory entry is limited to 32
Unicode UTF-16 code points, including the required Unicode null terminator.

Directory entries are grouped into blocks to form directory sectors. There are four directory entries
in a 512-byte directory sector (version 3 compound file), and there are 32 directory entries in a
4096-byte directory sector (version 4 compound file). The number of directory entries can exceed
the number of storage objects and stream objects due to unallocated directory entries.

The detailed Directory Entry structure is specified below.

23 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Directory Entry Name

...

...

...

...

...

...

...

(Directory Entry Name cont'd for 8 rows)

Directory Entry Name Length Object Type Color Flag

Left Sibling ID

Right Sibling ID

Child ID

CLSID

...

...

...

State Bits

Creation Time

...

Modified Time

...

24 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Starting Sector Location

Stream Size

...

Directory Entry Name (64 bytes): This field MUST contain a Unicode string for the storage or
stream name encoded in UTF-16. The name MUST be terminated with a UTF-16 NUL
character. Thus storage and stream names are limited to 32 UTF-16 code points, including the
NULL terminator character. When locating an object in the compound file except for the root
storage, the directory entry name is compared using a special case-insensitive upper-case
mapping, described in Red-Black Tree. The following characters are illegal and MUST NOT be

part of the name: '/', '\', ':', '!'.

Directory Entry Name Length (2 bytes): This field MUST match the length of the Directory
Entry Name Unicode string in bytes. The length MUST be a multiple of 2, and include the NUL

terminator character in the count. This length MUST NOT exceed 64, the maximum size of the
Directory Entry Name field.

Object Type (1 byte): This field MUST be 0x00, 0x01, 0x02, or 0x05, depending on the actual
type of object. All other values are not valid.

Name Value

Unknown or unallocated 0x00

Storage Object 0x01

Stream Object 0x02

Root Storage Object 0x05

Color Flag (1 byte): This field MUST be 0x00 (red) or 0x01 (black). All other values are not
valid.

Name Value

red 0x00

black 0x01

Left Sibling ID (4 bytes): This field contains the Stream ID of the left sibling. If there is no left
sibling, the field MUST be set to NOSTREAM (0xFFFFFFFF).

Value Meaning

REGSID

0x00000000 — 0xFFFFFFF9

Regular stream ID to identify directory entry.

MAXREGSID

0xFFFFFFFA

Maximum regular stream ID.

NOSTREAM If there is no left sibling.

25 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Value Meaning

0xFFFFFFFF

Right Sibling ID (4 bytes): This field contains the Stream ID of the right sibling. If there is no
right sibling, the field MUST be set to NOSTREAM (0xFFFFFFFF).

Value Meaning

REGSID

0x00000000 — 0xFFFFFFF9

Regular stream ID to identify directory entry.

MAXREGSID

0xFFFFFFFA

Maximum regular stream ID.

NOSTREAM

0xFFFFFFFF

If there is no right sibling.

Child ID (4 bytes): This field contains the Stream ID of a child object. If there is no child
object, then the field MUST be set to NOSTREAM (0xFFFFFFFF).

Value Meaning

REGSID

0x00000000 — 0xFFFFFFF9

Regular stream ID to identify the directory entry.

MAXREGSID

0xFFFFFFFA

Maximum regular stream ID.

NOSTREAM

0xFFFFFFFF

If there is no child object.

CLSID (16 bytes): This field contains an object class GUID, if this entry is a storage or root

storage. If there is no object class GUID set on this object, then the field MUST be set to all
zeroes. In a stream object, this field MUST be set to all zeroes. If not NULL, the object class
GUID can be used as a parameter to launch applications.

Value Meaning

0x00000000000000000000000000000000 If there is no object class GUID set on this object.

State Bits (4 bytes): This field contains the user-defined flags if this entry is a storage object
or root storage object. If there are no state bits set on the object, then this field MUST be set
to all zeroes.

Value Meaning

0x00000000 If there are no state bits set on the object.

Creation Time (8 bytes): This field contains the creation time for a storage object. The
Windows FILETIME structure is used to represent this field in UTC. If there is no creation
time set on the object, this field MUST be all zeroes. For a root storage object, this field MUST
be all zeroes, and the creation time is retrieved or set on the compound file itself.

%5bMS-GLOS%5d.pdf

26 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Value Meaning

0x0000000000000000 If there is no creation time set on the object or for a root storage object.

Modified Time (8 bytes): This field contains the modification time for a storage object. The
Windows FILETIME structure is used to represent this field in UTC. If there is no modified time
set on the object, this field MUST be all zeroes. For a root storage object, this field MUST be
all zeroes, and the modified time is retrieved or set on the compound file itself.

Value Meaning

0x0000000000000000 If there is no modified time set on the object or the object is a root

storage object.

Starting Sector Location (4 bytes): This field contains the first sector location if this is a
stream object. For a root storage object, this field MUST contain the first sector of the mini
stream, if the mini stream exists.

Stream Size (8 bytes): This 64-bit integer field contains the size of the user-defined data, if

this is a stream object. For a root storage object, this field contains the size of the mini
stream.

For a version 3 compound file 512-byte sector size, this value of this field MUST be less

than or equal to 0x80000000 (equivalently, this requirement could be stated: the size of a
stream or of the mini stream in a version 3 compound file MUST be less than or equal to
2GB). Note that as a consequence of this requirement, the most significant 32 bits of this

field MUST be zero in a version 3 compound file. However, implementers should be aware
that some older implementations did not initialize the most significant 32 bits of this field,
and these bits might therefore be nonzero in files that are otherwise valid version 3
compound files. Although this document does not normatively specify parser behavior, it is
recommended that parsers ignore the most significant 32 bits of this field in version 3
compound files, treating it as if its value were zero, unless there is a specific reason to do

otherwise (for example, a parser whose purpose is to verify the correctness of a compound

file).

2.6.2 Root Directory Entry

The first entry in the first sector of the directory chain (also referred to as the first element of the
directory array, or stream ID #0) is known as the root directory entry, and it is reserved for two
purposes. First, it provides a root parent for all objects stationed at the root of the compound file.
Second, its function is overloaded to store the size and starting sector for the mini stream.

The root directory entry behaves as both a stream and storage object. The root directory entry's
Name field MUST contain the null-terminated string "Root Entry" in Unicode UTF-16.

The object class GUID (CLSID) stored in the root directory entry can be used for Component Object
Model (COM) activation of the document's application.

The time stamps for the root storage are not maintained in the root directory entry. Rather, the root
storage's creation and modification time stamps are normally stored on the file itself in the file
system.

The creation time and modified time fields in the root storage directory entry MUST be all zeroes.

27 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

2.6.3 Other Directory Entries

Directory entries other than the root storage directory entry are marked as either stream objects,
storage objects, or unallocated objects.

Storage objects MAY have CLSID, creation time, modified time, and Child Stream ID values. Stream
objects MUST set these values to zero.

Stream objects MAY have valid Starting Sector Location and Stream Size values, whereas these
fields are set to zero for storage objects (except as noted for the root directory entry).

To determine the file location of actual stream data from a stream directory entry, it is necessary to
determine whether the stream exists in the FAT or the mini FAT. Streams whose size is less than the
Mini Sector Cutoff value (typically 4096 bytes) for the file exist in the mini stream. The Starting

Sector Location is used as an index into the mini FAT (which starts at mini FAT Starting Location) to
track the chain of sectors through the mini stream. Streams whose size is greater than the Mini
Sector Cutoff value for the file exist as standard streams--their Starting Sector Location value is
used as an index into the standard FAT, which describes the chain of full sectors containing their

data.

For 512-byte sectors, the Stream Size upper 32-bits field MUST be set to zero when the compound

file is written. However, the high DWORD of this field was not initialized in older implementations,
so current implementations MUST accept uninitialized high DWORD for the Stream Size field. For
version 4 compound files that support 4096-byte sector size, the Stream Size MUST be a full 64-bit
integer stream size.

Free (unused) directory entries are marked with Object Type 0x0 (unknown or unallocated). The
entire directory entry should consist of all zeroes except for the child, right sibling, and left sibling
pointers, which should be initialized to NOSTREAM (0xFFFFFFFF).

2.6.4 Red-Black Tree

Each set of sibling objects in one level of the containment hierarchy (all child objects under a
storage object) is represented as a red-black tree. The parent object of this set of siblings will have

a pointer to the top of this tree.

A red-black tree is a special type of binary search tree where each node has a color attribute of red
or black. It allows efficient searching in the list of child objects under a storage object. The

constraints on a red-black allow the binary tree to be roughly balanced, so that insertion, deletion,
and searching operations are efficient.

The red-black tree MUST maintain the following constraints in order for it to be valid.

1. The root storage object MUST always be black. Because the root directory does not have siblings,
its color is irrelevant and can therefore be either red or black.

2. Two consecutive nodes MUST NOT both be red.

3. The left sibling MUST always be less than the right sibling. This sorting relationship is defined as
follows.

A node with a shorter name is less than a node with a longer name (compare the length of the

names from the Directory Entry Name Length field).

For nodes with the same name length from Directory Entry Name Length, iterate through

each UTF-16 code point, one at a time, from the beginning of the Unicode string.

%5bMS-DTYP%5d.pdf

28 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

For each UTF-16 code point, convert to upper-case with the Unicode Default Case Conversion

Algorithm, simple case conversion variant (simple case foldings), with the following notes.<2>

Compare each upper-cased UTF-16 code point binary value.

Unicode surrogate characters are never upper-cased, because they are represented by two

UTF-16 code points, while the sorting relationship upper-cases a single UTF-16 code point at a
time.

Lowercase characters defined in a newer, later version of the Unicode standard can be upper-

cased by an implementation that conforms to that later Unicode standard.

The simplest implementation of the above invariants would be to mark every node as black, in which

case the tree is simply a binary tree. However, keeping the red-black tree balanced will typically
result in better read performance.

All sibling objects within a storage object (all immediate child objects in one level of hierarchy)
MUST have unique names in the Directory Entry Name field, where uniqueness is determined by
the sorting relationship above.

2.7 Compound File User-Defined Data Sectors

Stream sectors are simply collections of arbitrary bytes. They are the building blocks of user-defined
data streams, and no restrictions are imposed on their contents. User-defined data sectors are
represented as chains in the FAT or mini FAT, and each chain MUST have a single directory entry
associated with it to hold its stream object metadata, such as its name and size.

Figure 15: Example of a user-defined data sector chain

In the example above with sector #0 through sector #8 shown, a user-defined data sector chain
starts at sector #7, continues to sector #1, continues to sector #3, and ends with sector #5. The
next sector location for sector #5 points to ENDOFCHAIN (0xFFFFFFFE).

To hold all of the user-defined data, the length of the user-defined data sector chain MUST be
greater than or equal to the stream size specified in the stream object's directory entry. The
unused portion of the last sector of a stream object's user-defined data SHOULD be filled with
zeroes to avoid leaking unintended information.

2.8 Compound File Range Lock Sector

The range lock sector is the sector that covers file offsets 0x7FFFFF00-0x7FFFFFFF in the file, which

are just before 2GB. These offsets are reserved for byte-range locking to support concurrency,
transactions, and other compound file features. The range lock sector MUST be allocated in the
FAT and marked with ENDOFCHAIN (0xFFFFFFFE), when the compound file grows beyond 2 GB.
Because 512-byte compound files are limited to 2 GB in size, these files do not need a range lock

%5bMS-GLOS%5d.pdf

29 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

sector allocated. If the compound file is greater than 2 GB and then shrinks to below 2 GB, the
range lock sector SHOULD be marked as FREESECT (0xFFFFFFFF) in the FAT.

The range lock sector MUST NOT contain any user-defined data. The header, FAT, DIFAT, mini FAT,
and directory chains MUST NOT point to the range lock sector location.

2.9 Compound File Size Limits

The minimum size of a compound file is one header, one FAT sector, and one directory sector, which
is 3 sectors total. Therefore, a compound file MUST be at least 3 sectors in length.

A 512-byte sector compound file MUST be no greater than 2 GB in size for compatibility reasons.
This means that every stream, including the directory entry array and mini stream, inside a 512-
byte sector compound file MUST be less than 2 GB in size.

4096-byte sector compound files can have 64-bit file and user-defined data stream sizes, up to
slightly less than 16 terabytes (4096 bytes/sector x MAXREGSECT (0xFFFFFFFA) sectors).

The maximum number of directory entries (storage objects and stream objects) is MAXREGSID
(0xFFFFFFFA), roughly 4 billion. This corresponds to a maximum directory sector chain length of
slightly less than 512 GB for a 4096-byte sector compound file.

The maximum number of directory entries (storage objects, stream objects, and unallocated

objects) in a 512-byte sector compound file is limited by the 2 GB file size, resulting in 0x00FFFFFF
(slightly less than 16 million) directory entries.

The maximum size of the mini stream is MAXREGSECT (0xFFFFFFFA) x 64 bytes, which is slightly
less than 256 GB. The maximum size of the mini stream in a 512-byte sector compound file is
limited by the 2 GB file size.

30 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

3 Structure Examples

This section contains a hexadecimal dump of a structured storage compound file to clarify the binary
file format. This compound file consists of the header sector plus 5 sectors numbered as sector #0
through sector #4. This example is a version 3 compound file with a sector size of 512 bytes.

Figure 16: Example of a compound file

3.1 The Header

Byte offset Field name Field value

0x0000 Header Signature 0xE11AB1A1E011CFD0

0x0008 Header CLSID 0x00000000000000000000000000000000 (null)

0x0018 Minor Version 0x003E

0x001A Major Version 0x0003

0x001C Byte Order 0xFFFE

0x001E Sector Size 0x0009 (512 bytes per sector)

0x0020 Mini Stream Sector Size 0x0006 (64 bytes per Mini Stream sector)

0x0022 Reserved 0x0000 0x00000000

0x0028 Number of directory Sector 0x00000000 (not used for version 3)

0x002C Number of FAT sectors 0x00000001 (1 FAT sector)

0x0030 Directory Starting Sector Location 0x00000001 (sector #1 for Directory)

0x0034 Transaction Signature 0x00000000 (not used)

0x0038 Mini Stream Size Cutoff 0x00001000 (4096 bytes)

0x003C Mini FAT Starting Sector Location 0x00000002 (sector #2 for Mini FAT)

0x0040 Number of Mini FAT sectors 0x00000001 (1 Mini FAT sector)

0x0044 DIFAT Start Sector Location 0xFFFFFFFE (ENDOFCHAIN)

0x0048 Number of DIFAT Sectors 0x00000000 (no DIFAT, less than 7MB)

0x004C DIFAT[0] 0x00000000 (sector #0 for FAT)

0x0050 DIFAT[1] through DIFAT[108] 0xFFFFFFFF (FREESECT) (free FAT sectors)

000000: D0CF 11E0 A1B1 1AE1 0000 0000 0000 0000

http://go.microsoft.com/fwlink/?LinkId=90136

31 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

000010: 0000 0000 0000 0000 3E00 0300 FEFF 0900;.......

000020: 0600 0000 0000 0000 0000 0000 0100 0000

000030: 0100 0000 0000 0000 0010 0000 0200 0000

000040: 0100 0000 FEFF FFFF 0000 0000 0000 0000

000050: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000060: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000070: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000080: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000090: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000100: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000110: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000120: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000130: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000140: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000150: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000160: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000170: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000180: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000190: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0001A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0001B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0001C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0001D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0001E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0001F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

3.2 Sector #0: FAT Sector

This sector is the first and only FAT sector in the file, with 5 non-empty entries.

FAT[Sector #0]: 0xFFFFFFFD = FATSECT: marks this sector as a FAT sector.

FAT[Sector #1]: 0xFFFFFFFE = ENDOFCHAIN: marks the end of the directory chain.

FAT[Sector #2]: 0xFFFFFFFE = ENDOFCHAIN: marks the end of the mini FAT chain.

FAT[Sector #3]: 0x00000004 = pointer to the next sector in the "Stream 1" data.

FAT[Sector #4]: 0xFFFFFFFE = ENDOFCHAIN: marks the end of the "Stream 1" stream data.

FAT[Sector #5 through #127] 0xFFFFFFFF = FREESECT: empty unallocated free sectors.

Byte offset Field name Field value

0x0200 Next Sector in Chain 0xFFFFFFFD (FAT sector)

0x0204 Next Sector in Chain 0xFFFFFFFE (end of chain)

0x0208 Next Sector in Chain 0xFFFFFFFE (end of chain)

0x020C Next Sector in Chain 0x00000004

32 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Byte offset Field name Field value

0x0210 Next Sector in Chain 0xFFFFFFFE (end of chain)

0x0214 Next Sector in Chain 0xFFFFFFFF (empty)

000200: FDFF FFFF FEFF FFFF FEFF FFFF 0400 0000

000210: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000220: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000230: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000240: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000250: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000260: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000270: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000280: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000290: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0002A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0002B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0002C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0002D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0002E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0002F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000300: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000310: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000320: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000330: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000340: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000350: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000360: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000370: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000260: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000380: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000390: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0003A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0003B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0003C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0003D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0003E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0003F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

3.3 Sector #1: Directory Sector

This is the first and only directory sector in the file. This directory sector consists of 4 directory
entries.

Stream ID 0: Root Storage Name = "Root Entry" (section 2.6.2)

Stream ID 1: Storage Name = "Storage 1" (section 2.6.3)

Stream ID 2: Stream Name = "Stream 1" (section 2.6.3)

Stream ID 3: Unused

33 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

3.3.1 Stream ID 0: Root Directory Entry

Byte offset Field name Field value

0x0400 Directory Entry Name "Root Entry" (section 2.6.2)

0x0440 Directory Entry Name Length 0x16 (22 bytes)

0x0442 Object Type 0x05 (root storage)

0x0443 Color Flag 0x01 (black)

0x0444 Left Sibling ID 0xFFFFFFFF (none)

0x0448 Right Sibling ID 0xFFFFFFFF (none)

0x044C Child ID 0x00000001 (Stream ID 1: "Storage 1" (section 2.6.3))

0x0450 CLSID 0x11CEC15456616700 0xAA005385 0x5BF9A100

0x0460 State Flags 0x00000000

0x0464 Creation Time 0x0000000000000000

0x046C Modification Time 0x0000000000000000

0x0474 Starting Sector Location 0x00000003 (sector #3 for mini Stream)

0x0478 Stream Size 0x0000000000000240 (576 bytes)

000400: 5200 6F00 6F00 7400 2000 4500 6E00 7400 R.o.o.t. .E.n.t.

000410: 7200 7900 0000 0000 0000 0000 0000 0000 r.y.............

000420: 0000 0000 0000 0000 0000 0000 0000 0000

000430: 0000 0000 0000 0000 0000 0000 0000 0000

000440: 1600 0501 FFFF FFFF FFFF FFFF 0100 0000

000450: 0067 6156 54C1 CE11 8553 00AA 00A1 F95B .gaVT....S.....[

000460: 0000 0000 0000 0000 0000 0000 801E 9213

000470: 4BB4 BA01 0300 0000 4002 0000 0000 0000 K.......@.......

3.3.2 Stream ID 1: Storage 1

Byte offset Field name Field value

0x0480 Directory Entry Name "Storage 1"

0x04C0 Directory Entry Name Length 0x14 (20 bytes)

0x04C2 Object Type 0x01 (storage)

0x04C3 Color Flag 0x01 (black)

0x04C4 Left Sibling ID 0xFFFFFFFF (none)

0x04C8 Right Sibling ID 0xFFFFFFFF (none)

0x04CC Child ID 0x00000002 (Stream ID 2: "Stream 1")

0x04D0 CLSID 0x5BF9A100AA00538511CEC15456616100

34 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Byte offset Field name Field value

0x04E0 State Flags 0x00000000

0x04E4 Creation Time 0x0000000000000000

0x04EC Modification Time 0x0000000000000000

0x04F4 Starting Sector Location 0x00000000

0x04F8 Stream Size 0x0000000000000000 (0 bytes)

000480: 5300 7400 6F00 7200 6100 6700 6500 2000 S.t.o.r.a.g.e. .

000490: 3100 0000 0000 0000 0000 0000 0000 0000 1...............

0004A0: 0000 0000 0000 0000 0000 0000 0000 0000

0004B0: 0000 0000 0000 0000 0000 0000 0000 0000

0004C0: 1400 0101 FFFF FFFF FFFF FFFF 0200 0000

0004D0: 0061 6156 54C1 CE11 8553 00AA 00A1 F95B .aaVT....S.....[

0004E0: 0000 0000 0088 F912 4BB4 BA01 801E 9213K.......

0004F0: 4BB4 BA01 0000 0000 0000 0000 0000 0000 K...............

3.3.3 Stream ID 2: Stream 1

Byte offset Field name Field value

0x0500 Directory Entry Name "Stream 1"

0x0540 Directory Entry Name Length 0x12 (18 bytes)

0x0542 Object Type 0x02 (stream)

0x0543 Color Flag 0x01 (black)

0x0544 Left Sibling ID 0xFFFFFFFF (none)

0x0548 Right Sibling ID 0xFFFFFFFF (none)

0x054C Child ID 0xFFFFFFFF (none)

0x0550 CLSID 0x00000000000000000000000000000000 (null)

0x0560 State Flags 0x00000000

0x0564 Creation Time 0x0000000000000000

0x056C Modification Time 0x0000000000000000

0x0574 Starting Sector Location 0x00000000 (sector #0 in mini FAT)

0x0578 Stream Size 0x0000000000000220 (544 bytes)

000500: 5300 7400 7200 6500 6100 6D00 2000 3100 S.t.r.e.a.m. .1.

000510: 0000 0000 0000 0000 0000 0000 0000 0000

000520: 0000 0000 0000 0000 0000 0000 0000 0000

000530: 0000 0000 0000 0000 0000 0000 0000 0000

000540: 1200 0201 FFFF FFFF FFFF FFFF FFFF FFFF

000550: 0000 0000 0000 0000 0000 0000 0000 0000

000560: 0000 0000 0000 0000 0000 0000 0000 0000

35 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

000570: 0000 0000 0000 0000 2002 0000 0000 0000

3.3.4 Stream ID 3: Unused, Free

Byte offset Field name Field value

0x0580 Directory Entry Name ""

0x05C0 Directory Entry Name Length 0x00 (0 bytes)

0x05C2 Object Type 0x00 (invalid)

0x05C3 Color Flag 0x00 (red)

0x05C4 Left Sibling ID 0xFFFFFFFF (none)

0x05C8 Right Sibling ID 0xFFFFFFFF (none)

0x05CC Child ID 0xFFFFFFFF (none)

0x05D0 CLSID 0x00000000000000000000000000000000 (null)

0x05E0 State Flags 0x00000000

0x05E4 Creation Time 0x0000000000000000

0x05EC Modification Time 0x0000000000000000

0x05F4 Starting Sector Location 0x00000000

0x05F8 Stream Size 0x0000000000000000 (0 bytes)

All fields are zeroes except for the child, right sibling, and left sibling pointers, which are set to
NOSTREAM.

000580: 0000 0000 0000 0000 0000 0000 0000 0000

000590: 0000 0000 0000 0000 0000 0000 0000 0000

0005A0: 0000 0000 0000 0000 0000 0000 0000 0000

0005B0: 0000 0000 0000 0000 0000 0000 0000 0000

0005C0: 0000 0000 FFFF FFFF FFFF FFFF FFFF FFFF

0005D0: 0000 0000 0000 0000 0000 0000 0000 0000

0005E0: 0000 0000 0000 0000 0000 0000 0000 0000

0005F0: 0000 0000 0000 0000 0000 0000 0000 0000

3.4 Sector #2: MiniFAT Sector

The mini FAT sector is identical to a FAT sector in structure, but instead of describing allocations for

the file, the mini FAT describes allocations for the mini stream. The following is a chain of eight
contiguous sectors.

MiniFAT[Sector #0]: 0x00000001: This sector points to 2nd sector of "Stream 1".

MiniFAT[Sector #1]: 0x00000002: This sector point to 3rd sector of "Stream 1".

MiniFAT[Sector #2]: 0x00000003: This sector points to 4th sector of "Stream 1".

36 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

MiniFAT[Sector #3]: 0x00000004 : This sector points to 5th sector of "Stream 1".

MiniFAT[Sector #4]: 0x00000005 : This sector points to 6th sector of "Stream 1".

MiniFAT[Sector #5]: 0x00000006 : This sector points to 7th sector of "Stream 1".

MiniFAT[Sector #6]: 0x00000007 : This sector points to 8th sector of "Stream 1".

MiniFAT[Sector #7]: 0x00000008 : This sector points to 9th sector of "Stream 1".

MiniFAT[Sector #8]: 0xFFFFFFFE = ENDOFCHAIN: marks the end of the "Stream 1" user-defined
data.

MiniFAT[Sector #9 through #127] 0xFFFFFFFF = FREESECT: empty unallocated free sectors.

Byte offset Field name Field value

0x0600 Next Sector in Chain 0x00000001

0x0604 Next Sector in Chain 0x00000002

0x0608 Next Sector in Chain 0x00000003

0x060C Next Sector in Chain 0x00000004

0x0610 Next Sector in Chain 0x00000005

0x0614 Next Sector in Chain 0x00000006

0x0618 Next Sector in Chain 0x00000007

0x061C Next Sector in Chain 0x00000008

0x0620 Next Sector in Chain 0xFFFFFFFE (end of chain)

0x0624 Next Sector in Chain 0xFFFFFFFF (free)

000600: 0100 0000 0200 0000 0300 0000 0400 0000

000610: 0500 0000 0600 0000 0700 0000 0800 0000

000620: FEFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000630: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000640: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000650: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000660: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000670: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000680: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000690: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0006A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0006B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0006C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0006D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0006E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0006F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000700: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000710: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000720: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000730: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000740: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000750: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000760: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

37 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

000770: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000780: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

000790: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0007A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0007B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0007C0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0007D0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0007E0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0007F0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

3.5 Sector #3: Mini Stream Sector

The mini stream contains data for all streams whose length is less than the header's Mini Stream
Cutoff Size (4096 bytes). In this example, the mini stream contains the user-defined data for
Stream 1. The unused portion of the sector is zeroed out.

000800: 4461 7461 2066 6F72 2073 7472 6561 6D20 Data for stream

000810: 3144 6174 6120 666F 7220 7374 7265 616D 1Data for stream

000820: 2031 4461 7461 2066 6F72 2073 7472 6561 1Data for strea

...

000A00: 7461 2066 6F72 2073 7472 6561 6D20 3144 ta for stream 1D

000A10: 6174 6120 666F 7220 7374 7265 616D 2031 ata for stream 1

Although the user-defined data ends at file offset 0x000A1F, the mini stream sector is filled to the

end with known data, such as all zeroes, to prevent random disk or memory contents from
contaminating the file on-disk.

000A20: 0000 0000 0000 0000 0000 0000 0000 0000

000A30: 0000 0000 0000 0000 0000 0000 0000 0000

000A40: 0000 0000 0000 0000 0000 0000 0000 0000

000A50: 0000 0000 0000 0000 0000 0000 0000 0000

000A60: 0000 0000 0000 0000 0000 0000 0000 0000

000A70: 0000 0000 0000 0000 0000 0000 0000 0000

000A80: 0000 0000 0000 0000 0000 0000 0000 0000

000A90: 0000 0000 0000 0000 0000 0000 0000 0000

000AA0: 0000 0000 0000 0000 0000 0000 0000 0000

000AB0: 0000 0000 0000 0000 0000 0000 0000 0000

000AC0: 0000 0000 0000 0000 0000 0000 0000 0000

000AD0: 0000 0000 0000 0000 0000 0000 0000 0000

000AE0: 0000 0000 0000 0000 0000 0000 0000 0000

000AF0: 0000 0000 0000 0000 0000 0000 0000 0000

000B00: 0000 0000 0000 0000 0000 0000 0000 0000

000B10: 0000 0000 0000 0000 0000 0000 0000 0000

000B20: 0000 0000 0000 0000 0000 0000 0000 0000

000B30: 0000 0000 0000 0000 0000 0000 0000 0000

000B40: 0000 0000 0000 0000 0000 0000 0000 0000

000B50: 0000 0000 0000 0000 0000 0000 0000 0000

000B60: 0000 0000 0000 0000 0000 0000 0000 0000

000B70: 0000 0000 0000 0000 0000 0000 0000 0000

000B80: 0000 0000 0000 0000 0000 0000 0000 0000

000B90: 0000 0000 0000 0000 0000 0000 0000 0000

000BA0: 0000 0000 0000 0000 0000 0000 0000 0000

000BB0: 0000 0000 0000 0000 0000 0000 0000 0000

000BC0: 0000 0000 0000 0000 0000 0000 0000 0000

000BD0: 0000 0000 0000 0000 0000 0000 0000 0000

38 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

000BE0: 0000 0000 0000 0000 0000 0000 0000 0000

000BF0: 0000 0000 0000 0000 0000 0000 0000 0000

39 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

4 Security Considerations

4.1 Validation and Corruption

Implementers should be aware of the technical challenges of validating the CFB format and the

potential security implications of insufficient validation.

Due to the representation of sector chains, verifying the correctness of the FAT sectors of a
compound file (section 2.3) requires reads from the underlying storage medium (for example, disk)
with total read size linear in the total file size, as well as temporary storage (for example, RAM)
linear in the total file size. Similarly, verifying the correctness of the directory sectors of a compound
file (section 2.6) requires read size and temporary storage linear in the total number of directory

entries, that is, in the total number of stream objects and storage objects in the file. The flexibility
of sector allocation permitted by the format can increase the performance costs of validation in
practice because FAT sectors, directory sectors, and so forth are often noncontiguous.

If a parser has performance requirements, such as efficient access to small portions of a large file, it

might not be possible to both satisfy the performance requirements and completely validate
compound files. Parser implementers might instead choose to validate only the portions of the file
requested by an application.

Although details will vary between implementations, typical security concerns resulting from poorly
designed or insufficient validation include:

References to sector numbers whose starting offset is past the end of the file, incorrect marking

of free sectors in the FAT, mismatches between stream sizes in the directory and the length of
the corresponding sector chains, and multiple sector chains referencing the same sectors can
potentially break the assumptions of sector allocation algorithms.

The representations of sector chains in FAT sectors and of parent/child and sibling relationships in

directory sectors make it possible for a corrupted file to represent cyclical references. Cyclical
references in the FAT or directory can cause naïve parsing algorithms to get stuck in an infinite

loop.

Corruption of the red-black tree (section 2.6.4) representing the child objects of a storage object

can break the assumptions of directory entry allocation algorithms. Such corruption might include

improper sorting of child object names, invalid red/black marking, multiple child object trees
referencing the same directory entry, and the aforementioned cyclical references.

4.2 File Security

Because a compound file is stored as a single file in the file-system, normal file-system security
mechanisms can be used to secure the compound file. This includes read/write permissions, Access
Control List (ACL), and encryption (NTFS EFS or BitLocker) where appropriate.

4.3 Unallocated Ranges

Usually a compound file will include ranges of bytes that are not allocated for either CFB structures

or for user-defined data. For instance, each stream whose length is not an exact multiple of the
sector size requires a trailing portion of the last sector in the stream's sector chain to be unused.
Implementations that fail to initialize these byte ranges to zero (as recommended in section 2.7)
might unintentionally leak user data.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

40 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft® Office 98 for Mac

Microsoft® Office 2001 for Mac

Microsoft® Office X for Mac

Microsoft® Office 2004 for Mac

Microsoft® Office 2008 for Mac

Microsoft Windows NT® 4.0 operating system

Microsoft Windows® 98 operating system

Microsoft Windows® 2000 operating system

Microsoft Windows® Millennium Edition operating system

Windows® XP operating system

Windows® XP 64-Bit Edition operating system

Windows Server® 2003 operating system

Windows Vista® operating system

Windows Server® 2008 operating system

Windows® 7 operating system

Windows Server® 2008 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.2: For Windows NT, Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2: the Header
Transaction Signature Number can be non-zero if a compound file is opened and saved with
STGM_TRANSACTED flag used in one of the following APIs: StgOpenStorage, StgCreateDocfile,

StgOpenStorageEx, StgCreateStorageEx.

<2> Section 2.6.4: For Windows XP and Windows Server 2003: The compound file implementation

conforms to the Unicode 3.0.1 Default Case Conversion Algorithm, simple case folding
(http://www.unicode.org/Public/3.1-Update1/CaseFolding-4.txt) with the following exceptions.

41 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Added or subtracted

from Unicode 3.0.1

Lowercase UTF-16

code point

Uppercase UTF-16

code point Uppercase Unicode name

Subtracted 0x280 0x01A6 LATIN LETTER YR

Subtracted 0x0195 0x01F6 LATIN CAPITAL LETTER HWAIR

Subtracted 0x01BF 0x01F7 LATIN CAPITAL LETTER WYNN

Subtracted 0x01F9 0x01F8 LATIN CAPITAL LETTER N

WITH GRAVE

Subtracted 0x0219 0x0218 LATIN CAPITAL LETTER S

WITH COMMA BELOW

Subtracted 0x021B 0x021A LATIN CAPITAL LETTER T WITH

COMMA BELOW

Subtracted 0x021D 0x021C LATIN CAPITAL LETTER YOGH

Subtracted 0x021F 0x021E LATIN CAPITAL LETTER H

WITH CARON

Subtracted 0x0223 0x0222 LATIN CAPITAL LETTER OU

Subtracted 0x0225 0x0224 LATIN CAPITAL LETTER Z

WITH HOOK

Subtracted 0x0227 0x0226 LATIN CAPITAL LETTER A

WITH DOT ABOVE

Subtracted 0x0229 0x0228 LATIN CAPITAL LETTER E WITH

CEDILLA

Subtracted 0x022B 0x022A LATIN CAPITAL LETTER O

WITH DIAERESIS AND

MACRON

Subtracted 0x022D 0x022C LATIN CAPITAL LETTER O

WITH TILDE AND MACRON

Subtracted 0x022F 0x022E LATIN CAPITAL LETTER O

WITH DOT ABOVE

Subtracted 0x0231 0x0230 LATIN CAPITAL LETTER O

WITH DOT ABOVE AND

MACRON

Subtracted 0x0233 0x0232 LATIN CAPITAL LETTER Y WITH

MACRON

Subtracted 0x03DB 0x03DA GREEK LETTER SIGMA

Subtracted 0x03DD 0x03DC GREEK LETTER DIGAMMA

Subtracted 0x03DF 0x03DE GREEK LETTER KOPPA

Subtracted 0x03E1 0x03E0 GREEK LETTER SAMPI

Subtracted 0x0450 0x0400 CYRILLIC CAPITAL LETTER IE

42 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Added or subtracted

from Unicode 3.0.1

Lowercase UTF-16

code point

Uppercase UTF-16

code point Uppercase Unicode name

WITH GRAVE

Subtracted 0x045D 0x040D CYRILLIC CAPITAL LETTER I

WITH GRAVE

Subtracted 0x048D 0x048C CYRILLIC CAPITAL LETTER

SEMISOFT SIGN

Subtracted 0x048F 0x048E CYRILLIC CAPITAL LETTER ER

WITH TICK

Subtracted 0x04ED 0x04EC CYRILLIC CAPITAL LETTER E

WITH DIAERESIS

Added 0x03C2 0x03A3 GREEK CAPITAL LETTER

SIGMA

Subtracted 0x03C2 0x03C2 GREEK SMALL LETTER FINAL

SIGMA

For Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2: The
compound files implementation conforms to the Unicode 5.0 Default Case Conversion Algorithm,
simple case folding (http://www.unicode.org/Public/5.0.0/ucd/CaseFolding.txt) with the following
exceptions.

Added or subtracted

from Unicode 5.0

Lowercase UTF-

16 code point

Uppercase UTF-

16 code point Uppercase Unicode name

Added 0x023A 02C65 LATIN SMALL LETTER A WITH

STROKE

Subtracted 0x023A 0x023A LATIN CAPITAL LETTER A WITH

STROKE

Added 0x2C65 0x2C65 LATIN SMALL LETTER A WITH

STROKE

Subtracted 0x2C65 0x023A LATIN CAPITAL LETTER A WITH

STROKE

Added 0x023E 0x2C66 LATIN SMALL LETTER T WITH

DIAGONAL STROKE

Subtracted 0x023E 0x023E LATIN CAPITAL LETTER T WITH

DIAGONAL STROKE

Added 0x2C66 0x2C66 LATIN SMALL LETTER T WITH

DIAGONAL STROKE

Subtracted 0x2C66 0x023E LATIN CAPITAL LETTER T WITH

DIAGONAL STROKE

Added 0x03C2 0x03A3 GREEK CAPITAL LETTER SIGMA

Subtracted 0x03C2 0x03C2 GREEK SMALL LETTER FINAL

SIGMA

43 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

Added or subtracted

from Unicode 5.0

Lowercase UTF-

16 code point

Uppercase UTF-

16 code point Uppercase Unicode name

Added 0x03C3 0x03A3 GREEK CAPITAL LETTER SIGMA

Subtracted 0x03C3 0x03C2 GREEK SMALL LETTER FINAL

SIGMA

Added 0x1FC3 0x1FC3 GREEK SMALL LETTER ETA WITH

PROSGEGRAMMENI

Subtracted 0x1FC3 0x1FCC GREEK CAPITAL LETTER ETA

WITH PROSGEGRAMMENI

Added 0x1FCC 0x1FC3 GREEK SMALL LETTER ETA WITH

PROSGEGRAMMENI

Subtracted 0x1FCC 0x1FCC GREEK CAPITAL LETTER ETA

WITH PROSGEGRAMMENI

Ignored any code point >

0xFFFF

same value (itself)

44 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

45 / 45

[MS-CFB] — v20110920
 Compound File Binary File Format

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, September 20, 2011

7 Index

A

Applicability 10

C

Change tracking 44
Compound file directory entry 22
Compound_File_DIFAT_Sectors packet 20
Compound_File_Directory_Entry packet 22
Compound_File_FAT_Sectors packet 18
Compound_File_Header packet 15
Compound_File_Mini_FAT_Sectors packet 19
Corruption 39

D

DIFAT sectors 20
Directory sectors

compound file directory entry 22
other directory entries 27
overview 22
red-black tree 27
root directory entry 26

E

Examples

header 30
overview 30
sector #0 - FAT sector 31
sector #1 - directory sector 32
sector #2 - MiniFAT sector 35
sector #3 - mini stream sector 37

F

FAT sectors 18
Fields - vendor-extensible 10
File security 39

G

Glossary 5

H

Header (section 2.2 15, section 3.1 30)

I

Informative references 7
Introduction 4

L

Localization 10

M

Mini FAT sectors 19

N

Normative references 7

O

Overview 11
Overview (synopsis) 7

P

Product behavior 40

R

Range-lock sector 28
Red-black tree 27
References

informative 7
normative 7

Relationship to protocols and other structures 9
Root directory entry 26

S

Sector #0 - FAT sector 31
Sector #1 - directory sector 32
Sector #2 - MiniFAT sector 35
Sector #3 - mini stream sector 37
Sector numbers and types 13
Security considerations

file security 39
validation and corruption 39

Size limits 29

T

Tracking changes 44

U

User-defined data sectors 28

V

Validation 39
Vendor-extensible fields 10
Versioning 10

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Compound File Sector Numbers and Types
	2.2 Compound File Header
	2.3 Compound File FAT Sectors
	2.4 Compound File Mini FAT Sectors
	2.5 Compound File DIFAT Sectors
	2.6 Compound File Directory Sectors
	2.6.1 Compound File Directory Entry
	2.6.2 Root Directory Entry
	2.6.3 Other Directory Entries
	2.6.4 Red-Black Tree

	2.7 Compound File User-Defined Data Sectors
	2.8 Compound File Range Lock Sector
	2.9 Compound File Size Limits

	3 Structure Examples
	3.1 The Header
	3.2 Sector #0: FAT Sector
	3.3 Sector #1: Directory Sector
	3.3.1 Stream ID 0: Root Directory Entry
	3.3.2 Stream ID 1: Storage 1
	3.3.3 Stream ID 2: Stream 1
	3.3.4 Stream ID 3: Unused, Free

	3.4 Sector #2: MiniFAT Sector
	3.5 Sector #3: Mini Stream Sector

	4 Security Considerations
	4.1 Validation and Corruption
	4.2 File Security
	4.3 Unallocated Ranges

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

